

Strategic management to increase the absorption of vocational high school graduates in business, industry and work world: a case study

Zummy Anselmus Dami^{1*}, Lamijan², Petrisia Anas Waluwandja¹, Ireni Irnawati Pellokila³, Yanrini Martha Anabokay¹

¹Faculty of Education, Universitas Persatuan Guru 1945 NTT, Indonesia

²Sekolah Menengah Kejuruan Negeri 1 Ngawi, Ngawi, Indonesia

³Faculty of Education, IAKN Kupang, Indonesia

Article Info

Article history:

Received Sept 25th, 2025

Revised Nov 20th, 2025

Accepted Dec 22th, 2025

Keywords:

Strategic management industrial class

Graduate absorption

Vocational high school

ABSTRACT

Previous research focused on program evaluation or industrial needs analysis, while this research focused on implementing industrial classes to increase the absorption of vocational graduates. This study aimed to analyse strategic management's role in increasing the absorption of vocational high school graduates in the business world, industry and work. This research uses qualitative methods with a case study type. The results found four main themes, which include: 1). vision and mission of the industrial class, 2). policies, regulations, and policies in the industrial class in increasing graduate absorption, 3). Learning programs and activities in industrial classes in increasing graduate absorption, and 4) strategic steps taken by schools in industrial class programs in increasing graduate absorption.

© 2025 The Authors. Published by IICET.

This is an open access article under the CC BY-NC-SA license
(<https://creativecommons.org/licenses/by-nc-sa/4.0/>)

Corresponding Author:

Zummy Anselmus Dami,
Universitas Persatuan Guru 1945 NTT
Email: zummy_anselmus@gmail.com

Introduction

In Indonesia, the success of vocational education, especially vocational high schools, is measured based on the number of graduates who can work in the business, industry and work world (DUDIKA) or independent entrepreneurship (Rojaki et al., 2021). However, vocational high school graduates become graduates with the highest unemployment rate. Data from the Central Statistics Agency (BPS) shows that the Open Unemployment Rate (TPT) of SMK is still the highest, reaching 11.13% as of August 2021. While in second place, TPT for Senior High School was recorded at 9.09%. Furthermore, TPT for Junior High School (SMP) is 6.45%, University 5.98%, Diploma I/II/III 5.87%, and Elementary School (SD) 3.61%. TPT at each level of education decreased, except for elementary school graduates, who stagnated when compared to August 2020 (year-on-year). TPT Dawas recorded to remain at 3.61% when compared to August 2020. At the vocational high school level, it was noted that TPT experienced the most significant decrease compared to other education levels, which decreased by 2.42% from a TPT figure of 13.55% to 11.13%. Indonesia's TPT is at 6.49% as of August 2021. This figure decreased by 0.58% from the TPT in August 2020, where the TPT for men was recorded at 6.74%, higher than the TPT for women, which was 6.11% (Pahlepi, 2021).

Jayanti et al. (2020) stated that the low absorption of vocational high school graduates was caused by the skills possessed by graduates that were not those needed by DUDIKA. The Business, industry and work world (DUDIKA) prioritizes a system based on logical thinking skills, making concepts, creativity and innovation. The focus of learning in industrial classes emphasizes mastery of skills, knowledge, attitudes, and values of industrial needs (Rizki et al., 2017).

One way to bring competencies closer to the needs of DUDIKA is to develop industrial class programs with curricula that are based on DUDIKA needs. Based on the Regulation of the Minister of Industry (Permenperin) Number 3 of 2017, it is stated that there is a need for the role of industry in the implementation of vocational education to suit industry needs. Therefore, competency-based vocational education that links and matches with industry is required. This can be done by synchronizing the existing curriculum with the necessary competencies of DUDIKA by presenting guest teachers from DUDIKA to deliver material in industrial classes.

The implementation of industrial classes can provide expectations to students related to the experience of working correctly in the industrial world, which they have not gained when learning in class. Industrial classes can be a valuable experience for students to explore their abilities and practice the skills they gain by applying them in industrial classes according to their fields (Achsani et al., 2020). Industrial classes are intended to lead to a competency-based curriculum, namely activities carried out referring to industrial standardization with the demand to harmonize global market conditions (Suroto, 2017b). Pratama and Bintang (2016) state that industrial class models can also be developed with training materials that are made standard, easy to learn, done with discussion and practice, prioritizing the ability of knowledge and skills so that it is easy to practice.

Cooperation between the school and industry is needed to prepare the strategic management of industrial classes. Burns and Chopra (2017) and Anggraeni (2018) assert that cooperation requires agreement from both parties to realize goals for mutual benefit. Industrial class as a learning activity with collaboration between the school and industry is expected to solve the absorption of vocational high school graduates in the industrial world (Prasetyo et al., 2018). The collaboration of the world of education and the industrial world can determine the success of vocational education, especially in providing input on the competencies and abilities of vocational education graduate students, which can be stumbled upon according to industry needs (Cahyanti et al., 2018). This stage of strategic management needs to be carried out in the implementation of industrial classes in vocational schools to produce graduates with DUDIKA competencies, which can be achieved so that the number of graduates working at DUDIKA can increase. Through cooperation and collaboration, the competence of graduates increases, supported by appropriate strategic management (Mahmudah & Santosa, 2021). This strategic management needs to be carried out in implementing industrial classes in vocational schools to produce graduates with DUDIKA competencies, which can be achieved so that the number of graduates working at DUDIKA can increase.

Several previous studies have been conducted to analyze the effectiveness of industry involvement in vocational secondary schools in increasing the uptake of vocational secondary school graduates (Mutaqin et al., 2016; Rakhman & Trihantoyo, 2020; Yulianti et al., 2018; Ozer & Suna, 2020; Kober, 2019; Ayu & Trihantoyo, 2021; Syarifuddin et al., 2020; Triwahyudi, 2020; Priambudi et al., 2020). However, previous research focuses on program evaluation or industry needs analysis. This research can focus more on the strategic management of the "Industrial Classroom" and its impact on the uptake of vocational secondary school graduates. Unlike the research that will be carried out previously, strategic management focuses on implementing industrial classes to increase the absorption of vocational high school graduates by conducting case studies.

This research was conducted to analyze how strategic management can be done to increase the absorption of vocational high school graduates in DUDIKA. Furthermore, it is hoped that the results of this research can be implemented in vocational schools to develop their strategic management so that the absorption of vocational high school graduates in DUDIKA can increase.

Method

Research Design

This research uses qualitative methods with a case study type. This research approach facilitates the exploration of a phenomenon in its context, using various data sources (Baxter & Jack, 2008), which is based on a constructivist paradigm that requires close collaboration between researcher and subject (Crabtree & Miller, 1999), and depends on informant perception. In addition, the research designed as a qualitative case study describes the strategic management of industrial classes in increasing the absorption of vocational high school graduates at DUDIKA so that student absorption can be maximized.

Research Location

This case study was conducted at SMKN 1. Magetan has an industrial class plan to increase the absorption of graduates at DUDIKA. The characteristics of the school are presented in Table 1.

Table 1. Characteristics of the Research Location

Component	SMKN 1 Magetan
Curriculum programs	National curriculum and industrial-class curriculum
Vision and mission	There is a clear vision and mission
Industrial grade	There is an industrial-grade
Industrial grade facilities	There are facilities and infrastructure for the industrial class
Institutional status	Public school
Time allocation	Full day school
Level of participation of DUDIKA	There is DUDIKA participation

Informants

Researchers used the snowball sampling technique. In determining the sample, one or two people are first selected, but because the data is considered incomplete with this first person, the researcher looks for other people who are considered to know better and can complete the data provided by the previous person. And so on, so that the number of samples increases. In this study, the key informant was the principal. In this study, the informants were principals, heads of expertise programs, and teachers, with the number of informants for each school consisting of one principal, four vice principals, three heads of expertise programs, four teachers and DUDIKA.

Data Collection

This study used observation and in-depth interviews. Interviews were conducted with principals, vice principals, teachers, heads of expertise programs DUDIKA, and cooperation institutions. This is done to obtain information about strategic management data in implementing industrial classes to increase the absorption of vocational high school graduates at DUDIKA.

Data Analysis

The collected data is stored in a database for retrieval, concept mapping and categorization, as suggested by Yin (2003). Then, the data from the source is contextualized separately in rows. In the process of concept mapping, data, recorded line by line, is transferred to three concept maps derived from each data source. The findings from all three sources were compared using concept maps to validate the data. When comparing the statements in each concept map, the findings appear similar. Therefore, it is assumed that the data ensures validity. Finally, in the categorization process with a limited scope to the vision and mission of the industrial class, policies, regulations, and policies in the industrial class in increasing graduate absorption, programs and learning activities in the industrial class in increasing graduate absorption and strategic steps taken by schools in industrial class programs in increasing graduate absorption. The analysis is based on pattern matching, a technique proposed by Yin (2003). Given that the data are valid, it can be stated that there is no possibility of the influence of researchers during the collection, interpretation, and evaluation of the data (Seliger & Shohamy, 1989).

Results and Discussions

Results

Vision and Mission of Industrial Class

The vision and mission of the industrial class in increasing the absorption of graduates, as the results of an interview with the principal, namely SG, stated:

Internal school parties involved in formulating the vision and mission of industrial classes in schools are principals, vice principals, KTU, and teachers. The school's industrial class's vision is the realization of students with an industrial character. The school's industrial class's mission is the realization of entrepreneurial graduates. (W: KS/SGT/1a).

Likewise, the results of an interview with a teacher, Mrs. Indri Yuli Widya R, stated that:

Internal school parties involved in formulating the vision and mission of industrial classes in schools are principals, teachers, committees, and supervisors. The vision of the industrial class is the realization of students with industrial

character. The school's industrial class's mission is to participate in building the country (W: G-1/IYWR/1b; (W: WK-1/AT/1d).).

The results of the interview above were reinforced by an interview with DUDIKA, namely Mrs. Dita, who stated, "I know the vision and mission of the industrial class at school. There is a connection between the vision and mission of the industrial class in the school in line with the vision and mission of DUDIKA." (KW: DD-1/DT/1E).

Based on the results of interviews (W: KS/SGT/1a) (W: G-1/IYWR/1b) (W: G-2/ST/1c) (W: WK-1/AT/1d) (KW: DD-1/DT/1e) and researchers' observations on July 23, 2022, it can be concluded that the internal parties involved in the formulation of the vision and mission of the industrial class in the school are the principal, vice principal, KTU, head of program, teacher. The school's industrial class's vision is the realization of students with an industrial character. Meanwhile, the school's industrial class's mission is the realization of entrepreneurial graduates.

Policies, regulations, and policies in industrial classes in increasing graduate absorption

Policies, regulations, and policies in the industrial class in increasing graduate absorption, as the results of an interview with the principal, Mr. Sugiyanto, stated:

Government policies in the industrial class to increase the absorption of graduates are carried out by the government with financial assistance. The industrial class management policy in schools to increase the absorption of graduates that has been implemented is communication—communication has been well built. Bureaucratic Structure—bureaucracy is not complicated and facilitates the division of labour. Resources—Resources for the industrial grade are adequate. The disposition and attitude of the policy implementer have been arranged according to the job description (W: KS / SGT / 1a).

Likewise, the results of an interview with a teacher, Mrs. Indri Yuli Widya R, stated that: "Government policies that support the sustainability of industrial classes in schools are link and match. The industrial class management policies in schools include good communication, good bureaucratic structure, good resources, disposition/attitude of good policy implementers." (W: G-1/IYWR/1b; (W: G-2/ST/1c; W: WK-1/AT/1d).

The results of the interview above were reinforced by an interview at DUDIKA, namely Ibu Dita, who stated that: "The policies, regulations, and policies of the industrial class in schools have been in line with DUDIKA. Industrial class management policies have succeeded in increasing the absorption of graduates to work in industry." (KW: DD-1/DT/1e).

Based on the results of interviews (W: KS/SGT/1a) (W: G-1/IYWR/1b) (W: G-2/ST/1c) (W: WK-1/AT/1d) (KW: DD-1/DT/1e) and researchers' observations on July 23, 2022, it can be concluded that the government carries out government policies in the industrial class in increasing graduate absorption with financial assistance and assistance related to link and match. Industrial class management policies in schools to increase the absorption of graduates have been implemented; namely, communication and communication have been well built. Bureaucratic structure is simple and facilitates the division of labour. Resources for the industrial class are adequate. The disposition of the policy implementer's attitude has been arranged according to the job description.

Learning programs and activities in industrial classes in increasing graduate absorption

Learning programs in industrial classes in increasing graduate absorption

Learning programs in industrial classes in increasing graduate absorption, as the results of an interview with the principal, Mr. Sugiyanto, stated:

Industrial class programs at the school include Alfamart classes. The foundation for formulating industrial class learning programs and activities in schools is the potential and strength of the school, including the Alfamart industrial class program. (W: KS/SGT/1a).

Likewise, the results of an interview with a teacher, Mrs. Indri Yuli Widya R, stated that: "Alfamart's industrial class program". (W: G-1/IYWR/1b). The same thing was also expressed by the teacher, Mrs. Sartini, who revealed:

Industrial class learning program The Industrial class program at Alfamart School is implemented to produce graduates absorbed in DUDI. The foundation for formulating industrial class learning programs and activities in schools is based on the results of the East Java Provincial government policies and schools. The industrial class program produces graduates absorbed in DUDIKA (W: G-2 / ST / 1c).

Likewise, the results of an interview with the vice principal for industrial relations, Mrs. Anik Triwinarti, stated, "The industrial class program at the school is Alfamart by bringing guest teachers. The Minister of

Education and Culture is the foundation for formulating industrial class learning programs and activities." (W: WK-1/AT/1d).

The results of the interview above were reinforced by an interview with DUDIKA, namely Mrs. Dita, who stated that: "DUDIKA is involved in the formulation of industrial class learning programs and activities in schools. The industrial class learning program at the school is in line with DUDIKA, which will later be an internship place." (KW: DD-1/DT/1e).

The data mentioned above is supported by the results of the researchers' observations on July 23, 2022, researchers saw firsthand the industrial class program at SMKN 1 Magetan in the following documentation:

Figure 1. Inauguration of Alfamart at SMKN 1 Magetan

Based on the results of interviews (W: KS/SGT/1a) (W: G-1/IYWR/1bmeetings,2/ST/1c) (W: WK-1/AT/1d) (KW: DD-1/DT/1e) and researchers' observations on July 23, 2022, the formulation of industrial class learning programs in schools was carried out through several formulation meetings which began with small team discussions, discussed in management meetings and socialized to school residents. The foundation in formulating industrial class learning programs and activities in schools is the potential and strength of the school including the Alfamart industrial class program.

Learning activities in industrial classes in increasing graduate absorption

Learning activities in industrial classes in increasing graduate absorption, as the results of an interview with the principal, Mr. Sugiyanto, stated:

Learning activities are found in schools with the application of learning according to DUDI standards and the use of facilities and infrastructure. How to socialize the industrial class learning programs and activities with the community at school through direct socialization, banner making, and display at certain points. Teachers play a role in encouraging the program's success, students are the main actors and education staff as backups of administrative matters. The role of partners (DUDIKA) in the implementation of industrial class programs and activities in schools in mentoring and supervising related to program implementation. The role of the principal is to supervise the running of industrial class learning programs and activities as a motivator and controller of the sustainability of program implementation (W: KS / SGT / 1a).

Likewise, the results of an interview with a teacher, Mrs. Indri Yuli Widya R, stated that:

The role of teachers, students, and education staff in implementing industrial class programs and activities in schools is very supportive. The role of partners (DUDIKA) in implementing industrial classroom programs and school activities as guest teachers, internships, and external examiners. The role of the principal is to supervise the running of industrial class learning programs and activities in schools as industrial class officials, evaluators, and supervisors. (W: G-1/IYWR/1b).

The same thing was also expressed by the teacher, Mrs. Sartini, who revealed:

The role of teachers, students, and education staff in implementing industrial class programs and activities in schools as program implementers. The role of partners (DUDIKA) in implementing industrial class programs and activities

in companion industrial schools. The role of the principal is to supervise the running of industrial class learning programs and activities in schools as a supervisor. (W: G-2/ST/1c).

Likewise, the results of an interview with the vice principal for industrial relations, Mrs. Anik Triwinarti, stated that:

Learning activities in schools show that students practice directly to RPS. How to socialize the industrial class learning programs and activities to the community in schools through education office meetings. The role of teachers, students, and education staff in implementing industrial class programs and activities in teacher internship schools in industry, PKL for students, and assisting administration for educators. role (DUDIKA) in implementing industrial class programs and activities in schools accepting intern teachers, PKL students, and guest teachers at schools. The role of the principal in supervising the running of industrial class learning programs and activities in schools is to provide direction and motivation to industrial classes. (W: WK-1/AT/1d).

The results of the interview above were reinforced by an interview at DUDIKA, namely Mrs. Dita who stated that: "With industrial class learning activities, students can increase the absorption of graduates, because many graduates are accepted at Alfamart or DUDIKA. In addition, because of the training from DUDIKA, to produce graduates who are ready to use." (KW: DD-1/DT/1e).

Based on the results of interviews (W: KS/SGT/1a) (W: G-1/IYWR/1b) (W: G-2/ST/1c) (W: WK-1/AT/1d) (KW: DD-1/DT/1e) and researchers' observations on July 23, 2022, the implementation of industrial class learning is carried out with learning activities found in students' schools that practice directly to RPS. The role of teachers, students, and education staff in implementing industrial class programs and activities at teacher internship schools in the Alfamart industry, PKL for students, and assisting administration for educators. The role of partners (DUDIKA) in implementing industrial class programs and activities in schools accepting intern teachers, accepting PKL students, and becoming guest teachers at schools. The role of the principal in supervising the running of industrial class learning programs and activities in schools is to provide direction and motivation to industrial classes.

The school in industrial class programs took strategic steps to increase graduate absorption.

Strategic steps taken by schools in curriculum-related industrial classroom programs

The strategic steps taken by the school in the industrial class program related to the curriculum, as the results of an interview with the Principal, Mr. Sugiyanto, stated:

The strategic steps taken by the school in the curriculum-related industrial class program: 1) SIM (Management Information System), still built a good driver's license; 2) Industry-based curriculum, compiling an industry-based curriculum and implementing it; 3) Teaching factory, teaching factory developed with DUDI standards but not politically oriented, 4) Learning media, utilizing learning media by current IT developments. (W: KS/SGT/1a).

Likewise, the results of an interview with a teacher, Mrs. Indri Yuli Widya R, stated that:

Strategic steps were taken by the school in curriculum-related industrial class programs: 1) SIM (Management Information System), striving for information digitization; 2) Industry-based curriculum, synchronizing curriculum with industry; 3) Teaching factory, creating a teaching factory; 4) Learning media, industry-standard media. (W: G-1/IYWR/1b).

The same thing was also expressed by the teacher, Mrs. Sartini, who revealed:

Strategic steps carried out by schools in curriculum-related industrial class programs: 1) SIM (Management Information System) through websites and social media, 2) Industry-based curriculum synchronizes with industry, 3) Teaching factory collaborates with industry for learning, 4) Learning media by industry demands. (W: G-2/ST/1c).

Likewise, the results of an interview with the vice principal for industrial relations, Mrs. Anik Triwinarti, stated that:

Strategic steps were taken by the school in the curriculum-related industrial class program: 1) SIM (Management Information System), yes better developed; 2) Industry-based curriculum, yes compiling industry-based curriculum; 3) Teaching factory, yes, TEFA development in each department, 4) Learning media, yes, IT-based media development. (W: WK-1/AT/1d).

The results of the interview above were reinforced by an interview with DUDIKA, namely Mrs. Dita who stated that: "DUDIKA's involvement in the strategic steps carried out by the curriculum-related industrial class program: Teaching factory." (KW: DD-1/DT/1e).

Based on the results of interviews (W: KS/SGT/1a) (W: G-1/IYWR/1b) (W: G-2/ST/1c) (W: WK-1/AT/1d) (KW: DD-1/DT/1e) and researchers' observations on July 23, 2022, the strategic steps taken by schools in industrial class programs related to curriculum: 1) SIM (Management Information System), still build a good SIM by striving to digitize information, 2) Industry-based curriculum, compiling industry-based curriculum and implementing it through websites and social media, 3) Teaching factory, teaching factory developed with DUDI standards but not politically oriented, synchronizing curriculum with industry 4) Learning media, utilizing learning media by industry standards.

The school took Strategic steps in industrial class programs related to cooperation with DUDIKA partners

The strategic steps taken by the school in the industrial class program are related to cooperation with DUDIKA partners, as the results of an interview with the Principal, Mr. Sugiyanto, who stated that:

Strategic steps taken by the school in the related industrial class program Cooperation with DUDIKA partners: 1) Link and match industry, industrial class refers to DUDI by inviting guest teachers from DUDI, internships at DUDI, 2) Local wisdom, emphasizing the advantages of the region, 3) Local economic drivers, in collaboration with business actors. (W: KS/SGT/1a).

Likewise, the results of an interview with a teacher, Mrs. Indri Yuli Widya R, stated that:

Strategic steps carried out by the school in the related industrial class program Cooperation with DUDIKA partners: 1) Link and match industry through student internships, 2) Local wisdom, empowerment, 3) Local economic drivers, increasing entrepreneurial capabilities. (W: G-1/IYWR/1b).

The teacher also expressed the same thing, Mrs. Sartini, who revealed: Strategic steps taken by the school in related industrial class programs Cooperation with DUDIKA partners: Link and match industry job fair, Local wisdom is linked to local culture, Local economic drivers in collaboration with the Disperindag Office. (W: G-2/ST/1c).

Likewise, the results of an interview with the vice principal for industrial relations, Mrs. Anik Triwinarti, stated that:

Strategic steps taken by the school in the related industrial class program Cooperation with DUDIKA partners: Link and match industry. yes, there is an MOU with the industry, inviting guest teachers. Local wisdom, yes promoting or introducing local excellence. The driver of the local economy, yes, in collaboration with business actors. (W: WK-1/AT/1d).

The results of the interview above were reinforced by an interview with DUDIKA, namely Mrs. Dita who stated that: "DUDIKA's involvement in strategic steps carried out by industrial classes related to cooperation with DUDIKA partners: Link and match industry." (KW: DD-1/DT/1e).

Based on the results of interviews (W: KS/SGT/1a) (W: G-1/IYWR/1b) (W: G-2/ST/1c) (W: WK-1/AT/1d) (KW: DD-1/DT/1e) and researchers' observations on July 23, 2022, the strategic steps taken by the school in the related industrial class program Cooperation with DUDIKA partners: 1) industrial class refers to DUDI by inviting guest teachers from DUDI, internship at DUDI, 2) Local wisdom, emphasizing the advantages of the region and empowerment, 3) Driving the local economy, working with business actors to improve entrepreneurial capabilities.

Strategic steps taken by the school in industrial class programs related to institutional facilities and infrastructure

The strategic steps taken by the school in the industrial class program related to institutional facilities and infrastructure, as the results of an interview with the Principal, Mr. Sugiyanto, stated:

The strategic steps taken by the school in the industrial class program related to institutional facilities and infrastructure are: 1) Information technology-based infrastructure, infrastructure facilities are well equipped, and everything is based on ICT, 2) adequate facilities and infrastructure. Gradually, sarpras is equipped according to DUDIKA standards. (W: KS/SGT/1a).

Likewise, the results of an interview with a teacher, Mrs. Indri Yuli Widya R, stated that:

The strategic steps taken by the school in the industrial class program related to institutional facilities and infrastructure are: 1) Information technology-based infrastructure, standardizing practical tools, and 2) adequate facilities and infrastructure. Meet infrastructure facilities according to industry. (W: G-1/IYWR/1b).

The same thing was also expressed by the teacher, Mrs. Sartini, who revealed:

The strategic steps taken by the school in the industrial class program related to institutional facilities and infrastructure are: 1) information technology-based infrastructure facilities available website, email, and others. 2)

adequate facilities and infrastructure. Constantly update infrastructure facilities by the demands of DUDIKA. (W: G-2/ST/1c). ...

Likewise, the results of an interview with the vice principal for industrial relations, Mrs. Anik Triwinarti, stated that:

The strategic steps taken by the school in the industrial class program related to institutional facilities and infrastructure are information technology-based infrastructure, yes sarpras equipped and IT-based. Adequate facilities and infrastructure. Yes, gradually, sarpras is fulfilled according to industry standards. (W: WK-1/AT/1d).

The results of the interview were reinforced by an interview with DUDIKA, namely Mrs. Dita, who stated that: "DUDIKA's involvement in strategic steps carried out by industrial class programs related to institutional facilities and infrastructure: Adequate facilities and infrastructure." (KW: DD-1/DT/1e).

Based on the results of interviews (W: KS/SGT/1a) (W: G-1/IYWR/1b) (W: G-2/ST/1c) (W: WK-1/AT/1d) (KW: DD-1/DT/1e) and researchers' observations on July 23, 2022, the strategic steps taken by schools in industrial class programs related to institutional facilities and infrastructure are: 1) Infrastructure facilities are well equipped and everything is based on information communication technology available website, email and others, standardize practical tools, 2) facilities and infrastructure are equipped by DUDIKA standards.

Strategic steps taken by schools in industrial class programs related to human resources (teachers and education staff)

The strategic steps taken by the school in the industrial class program related to human resources (teachers and education staff), as the results of an interview with the vice principal for curriculum, Mr. Wijono, stated that:

The strategic steps taken by the school in the industrial class program related to human resources (teachers and education staff) by proposing teachers and education personnel with the status of civil servants who have qualifications and competencies according to needs. (W: WKS/ WJN/1A).

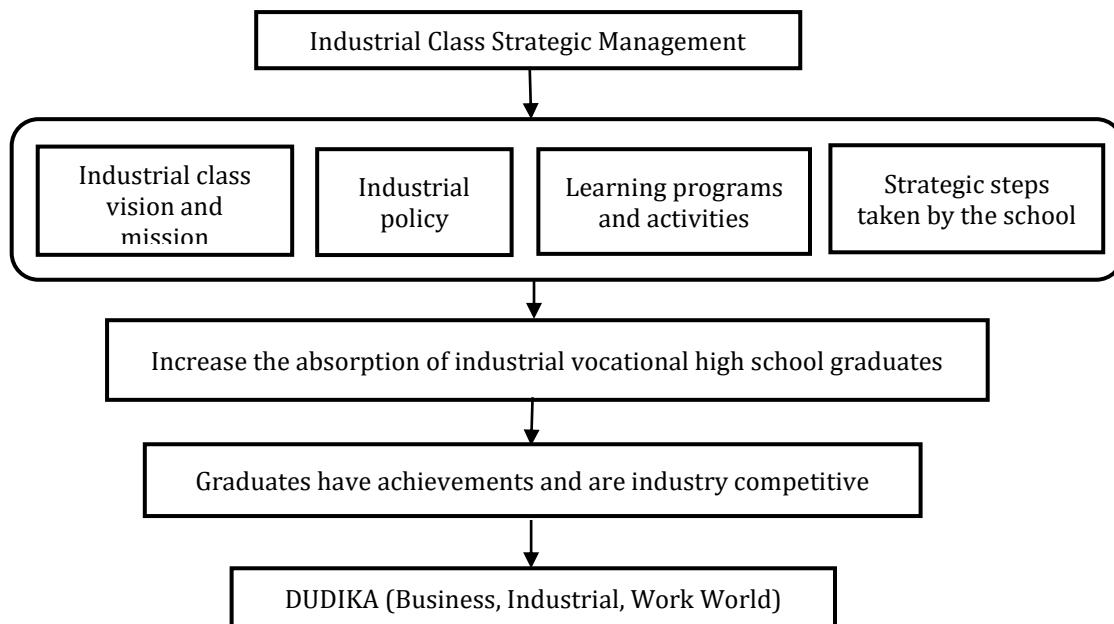
Likewise, the results of an interview with the vice principal for public relations, Erwanto Wibowo, stated that:

Strategic steps taken by schools in industrial class programs related to human resources (teachers and education personnel): The number of human resources with the existence of school industrial classes can meet educators and education staff in industrial classes; Human resource qualifications with the existence of school industrial classes can meet human resource qualifications in industrial classes. (W: WKSH/ EW/1b).

The same thing was also expressed by the head of the online business and marketing expertise program, Mr. Wijono, who revealed:

The strategic steps taken by the school in the industrial class program related to human resources (teachers and education staff) are carried out by periodically proposing teachers and education personnel with the status of civil servants with qualifications and competencies according to needs. (W: KPKB/ WJ/1C).

Likewise, the results of an interview with the teacher, Mr. Munaji, stated that:


Strategic steps taken by schools in industrial class programs related to human resources (teachers and education personnel): Proposing teachers and education personnel with civil servant status who have qualifications and competencies as needed. (W: G-1/ MN/1d).

The results of the interview were reinforced by an interview with DUDIKA, namely Mr. Yoga, who stated that:

DUDIKA's involvement in strategic steps carried out by industrial class programs related to human resources (teachers and education staff) with a proposal on holding training for teachers (especially vocational productive teachers) to improve the quality of competence by the industry. (KW: DD-1/ YG/1e).

Based on the interview results (W: WKS/ WJN/ 1a), (W: WKSH/ EW/ 1b), (W: KPKB/ WJ/ 1c), (W: G-1/ MN/ 1d) and (KW: DD-1/ YG/ 1e) it can be concluded that the strategic steps taken by schools in industrial class programs related to human resources (teachers and education personnel) by proposing teachers and education personnel with civil servant status who have qualifications and competencies as needed.

Based on the results of the analysis found four main themes, including the vision and mission of the industrial class, policies, regulations, and policies in the industrial class in increasing graduate absorption, programs and learning activities in the industrial class in increasing graduate absorption and strategic steps taken by schools in industrial class programs in increasing graduate absorption, these findings can be illustrated through Figure 2.

Figure 2. Final Findings

Vision and mission of Industrial Class in increasing graduate absorption

The vision of the Industrial Class in increasing the absorption of graduates is the realization of students with an industrial character. The school's industrial class's mission is to realize entrepreneurial graduates who can immediately work according to the needs of DUDIKA. Carry out excellence-minded learning to produce graduates who are devout, intelligent, skilled, have performance and abilities in the field of marketing that can be used in improving their lives; helping to develop children's potential as a whole and comprehensively, to produce graduates who are professional and have noble character; Developing a quality education and teaching system based on the development of information technology to produce reliable and resilient quality graduates.

The results of this study by David (2011) set the vision and mission as the determination of long-term goals and objectives (vision) and determine what steps must be taken to reinforce and clarify the priorities of the functions of each management of educational institutions so that workers, top management, and functional educational institutions can synergize and collaborate to achieve the vision as a predetermined goal.

Pearce and Robinson (2011) explain that vision describes an organisation's basic aspirations or dreams, which is usually the initiative of the founder or leader of the organization with the support of all employees. Vision describes the success to be achieved 10-20 years, even 50 years into the future. The vision statement presents the strategic intent of the educational institution that focuses the energy and resources of the educational institution on the desired future achievement. The six criteria of an effective vision are as follows: conceivable, desirable, achievable, focused, flexible and communicable. The mission is the first step in developing an educational institution strategy. Therefore, an effective mission will greatly assist educational institutions in formulating their strategies. The six criteria for an effective mission are clear, concise, unique, flexible, decision-making, organizational culture, and inspiring (Pearce & Robinson, 2011).

Policies, Regulations, and Policies in Industrial Classes in Increasing Graduate Absorption

Government policy supports the sustainability of industrial classes in schools by linking and matching with DUDIKA, the revitalization of vocational high schools. Industrial class management policies in schools are carried out by maintaining good communication with all stakeholders; bureaucratic structure tailored to industry needs; qualified human resources; internal training of trainers and industry guest teachers; disposition/attitude of policy implementers, according to a letter from the industry.

The results of this study are by Wheelen and Hunger (2010), who state that policy is a direction for decision-making in the strategy formulation stage with its implementation. Educational institutions use policies to make employees, and all parties of the educational institution make decisions and take actions that support educational institutions' mission, goals, and strategies.

The Ministry of Education and Culture (Kemendikbud) has adjusted and developed the vocational high school education curriculum. These efforts are made to align vocational education with the competencies of

graduate user needs. Thus, the curriculum has been adjusted to be demand-driven so that the business world and the industrial world are more actively involved in the vocational education process in vocational high schools. One of the implementations of Presidential Instruction No. 9 of 2016 is the cooperation of vocational high schools with the industrial and business world in industrial classes. Namely, it is the program of procuring special classes in the school environment by collaborating between schools and the industrial world. Vocational high schools can find partners and cooperate with the industrial business world through their expertise and competencies.

Learning Programs and Activities in Industrial Classes in Increasing Graduate Absorption

Learning programs in industrial classes increase graduates' absorption, namely Alfamart industry, Alfamart class and guest teachers. Learning activities in industrial classes in increasing graduate absorption, learning activities in industrial classes in increasing graduate absorption are carried out with learning activities found in schools carrying out theoretical activities of practices related to industry.

The results of this study by Azizah et al. (2015) stated that the vocational high school program is a secondary education program in the form of strengthening vocational education with the aim of preparing graduates who do not continue to higher education to be better prepared to enter the world of work by the competencies possessed in their fields, and based on Government Regulation No. 19 of 2005 concerning the minimum provisions for formal education units to meet the desired quality of education. If the quality of education is to be improved, it is necessary to improve the quality first, namely the curriculum. Likewise, the results of research conducted by Wicaksono et al. (2017) stated that one of the main agendas in the development of educational development is the development of quality and quality of the curriculum. This is the basis for achieving quality and competitive graduates and reaching the national and international scope. The tendency of Indonesian education to produce graduates without paying attention to the detailed abilities of graduates has increased vocational high school graduates. In addition to the graduate not working according to the field taken during school, graduates have to wait a long time to get a job.

The implementation of industrial classes can give hope to students, namely the experience of working in the industrial world, the experience they have not gotten when learning in class. Industrial classes can be a valuable experience for students to explore their ability to practice the skills gained by applying them in industrial classes according to the field they are exploring (Achsani et al., 2020). Industrial classes are intended to lead to a competency-based curriculum, namely activities referring to industrial standardization with the demand to harmonize global market conditions (Suroto, 2017b). Pratama and Bintang (2016) mentioned that the industrial class model can also be developed with standard training materials that are easy to learn and use; industrial classes are carried out with discussion and practice, prioritizing abilities, knowledge and skills that are easy to practice.

This research is supported by Tan and Yeo's (2019) research on industry—driven education programmes in Singapore. The program is designed to help students acquire skills and knowledge relevant to the world of work through industry experience and classroom skills training—similar to the research of Ratnaningsih and Rohman (2018). Industry classroom strategies can help students acquire skills and knowledge relevant to the world of work.

When synchronizing the curriculum of this industrial class program, vocational high schools design it together with industry managers. The orientation of this class program is to produce certified graduates by industry needs. Then, these graduates can be absorbed in the world of work according to their respective expertise competencies. The absorption of labor from the competence of vocational high school graduates is also expected to increase. Students carry out practical activities to achieve the competencies needed in the industry. In addition, they are also conditioned to learn values and apply work culture in the industry. Thus, students will master these two things. This industrial class program guarantees vocational high school graduates to be better prepared for work and reduce unemployment at the vocational secondary school education level.

Strategic Steps Taken by Schools in Industrial Class Programs in Increasing Graduate Absorption

The results of this study support research by Ozer & Suna (2019), where there are concrete steps to strengthen vocational schools in Turkey by the 2023 education vision, namely: strengthening cooperation with stakeholders, professional and pedagogical development of teachers, supporting diversity in vocations, increasing positive perceptions of vocations, establishing a quality assurance system for vocational schools, improving applied training and qualifications, and social integration through schools vocational.

Rully et al. (2019) showed that the PJB industrial class cooperation program produces competent engineering graduates and improves the quality and relevance of vocational high school education based on employment needs. Cooperation between schools and industry in implementing programs must be synergized to achieve optimal goals.

Industrial class as a learning activity with collaboration between the school and industry is expected to solve the absorption of vocational high school graduates in the industrial world (Prasetyo et al., 2018). Industrial classes are also prepared as a provision for student practice, which will later be used to work in the industrial world. By implementing industrial class activities, students can apply directly at school in real conditions, such as in the world of work (Wibowo, 2016). The collaboration of the world of education and the industrial world can determine the success of vocational education, especially in providing input on the competencies and abilities of graduate students, which can be standardized according to industry needs (Cahyanti et al., 2018). This collaboration will produce industrial-class models and programs that can benefit both parties (Atmawati et al., 2017).

This research is supported by Jiar and Jin's (2018) research. Classroom learning with industry experience in the field to help students acquire skills and knowledge relevant to the world of work. They are strengthened by Faruque and Rahman's (2018) research on cooperation between industry and academia in the development of job skills in the vocational education system in Bangladesh. The authors propose that industrial classroom strategies can improve the quality of vocational education and help students acquire skills relevant to the world of work.

Priambudi et al. (2020) stated that in the management of industrial classes, there are three stages, namely (1) industrial class planning, (2) implementation of industrial classes, and (3) evaluation. First, industrial class planning includes aspects of students carried out by industry and schools as organizers. The human resource aspect is carried out using instructor training organized by the industry to increase knowledge about the industry. The curriculum aspect is carried out by synchronizing the school curriculum with the industrial curriculum. The infrastructure aspect is carried out by industry and schools with industry involvement in the form of setting industrial class standards and procurement of infrastructure facilities and the form of school involvement in the form of procurement of reliable resources. Second, implementing industrial classes includes learning adjusted to the established curriculum and practices implemented in the industry. Third, evaluation includes evaluation of student learning outcomes in the form of students getting certificates from industry and evaluation of the implementation of industrial classes in the form of internal meetings and visits made by schools to industry and industry to schools.

The implementation of industrial classes can give students hope that the experience of working is like in the industrial world, where they have not received experience when learning in class. Industrial classes can be a valuable experience for students to explore their ability to practice the skills gained by applying them in industrial classes according to the field they are studying.

Conclusions

This study aims to analyse strategic management's role in increasing the absorption of vocational high school graduates in the business world, industry and work. The results showed that (1) the industrial class's vision is to increase graduates' absorption by realizing students with industrial character. The mission of the industrial class: realizing graduates who have an entrepreneurial spirit, preparing graduates to work directly according to the needs of DUDIKA, and carrying out superior-minded learning to produce graduates who are devout, intelligent, skilled, have performance and marketing skills that can improve their lives; (2). Policies, regulations, and policies in industrial classes in increasing the absorption of graduates in schools by linking and matching with DUDIKA; (3) Learning programs and activities in industrial classes in increasing graduate absorption, which include learning programs in industrial classes in increasing graduate absorption, learning activities in industrial classes in increasing graduate absorption; and (4) Strategic steps taken by the school in the industrial class program in increasing graduate absorption which include strategic steps taken by the school in the curriculum-related industrial class program, strategic steps taken by the school in the industrial class program related to cooperation with DUDIKA partners, strategic steps taken by the school in the industrial class program related to institutional facilities and infrastructure, and strategic steps taken by schools in industrial class programs related to human resources (teachers and education personnel).

References

- Achsani, H., Kustono, D., & Suhartadi, S. (2020). Model Kelas Industri pada Mitsubishi School Program di Sekolah Menengah Kejuruan. *Jurnal Pendidikan: Teori, Penelitian, dan Pengembangan*, 5(8), 1078. <https://doi.org/10.17977/jptpp.v5i8.13878>

- Anggraeni, C. W. (2018). Promoting Education 4.0 in English for Survival Class: What are the Challenges?. *Metathesis: Journal of English Language, Literature, and Teaching*, 2(1), 12–24. <https://doi.org/DOI:10.31002/metathesis.v1i2.676>
- Atmawati, Samsudi, & Sudana, I. M. (2017). Keefektifan Pelaksanaan Praktik Kerja Lapangan Berbasis Industri pada Kompetensi Keahlian Teknik Audio Video. *Journal of Vocational and Career Education*, 2(2), 1–8.
- Azizah, Murniati, & Khairuddin. (2015). Strategi Kerjasama Sekolah Dengan Dunia Usaha Dan Dunia Industri (DuDi) Dalam Meningkatkan. *Administrasi Pendidikan*, 3(2), 148–158.
- Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. *The Qualitative Report*, 13(4), 544-559. Retrieved from <http://www.nova.edu/ssss/QR/QR13-4/baxter.pdf>
- Burns, C., & Chopra. (2017). A Meta-analysis of the Effect of Industry Engagement on Student Learning in Undergraduate Programs. *The Journal of Technology, Management, and Applied Engineering*, 33(1), 2–20.
- Cahyanti, S. D., Indriayu, M., & Sudarno. (2018). Implementasi Program Link and Match dengan Dunia Usaha dan Dunia Industri pada Lulusan Pemasaran SMK Negeri 1 Surakarta. *BISE: Jurnal Pendidikan Bisnis dan Ekonomi*, 4(1). 16-37.
- Crabtree, B. F., & Miller, W. L. (1999). Doing qualitative research, Thousand Oaks, CA: Sage.
- David, F. R. (2011). *Strategic Management Manajemen Strategi Konsep*. Jakarta: Salemba Empat
- Jayanti, G., Achmadi, A., & Okianna, O. (2020). Relevansi Program Keahlian Lulusan SMK Dengan Dunia Kerja di Pontianak, <https://jurnal.untan.ac.id/index.php/jpdpb/issue/view/1455>
- Mahmudah, F. N., & Santosa, B. (2021). Vocational School Alignment Based-on Industry Needs. *Journal of Vocational Education Studies*, 4(1), 36. <https://doi.org/10.12928/joves.v4i1.3611>
- Mutaqin, M. K. A., Kuswana, W. S., & Sriyono, S. (2016). Studi Eksplorasi Keterserapan Lulusan Sekolah Menengah Kejuruan Negeri Di Kota Bandung Pada Industri Otomotif. *Journal of Mechanical Engineering Education*, 2(2), 247–252. <https://doi.org/10.17509/jmee.v2i2.1486>
- Özer, M., & Suna, H. E. (2019). Türkiye'de Mesleki ve Teknik Eğitimin Geleceği: 2023 Eğitim Vizyonu Sonrası Atilan Somut Adımlar. *Eğitim Ve İnsani Bilimler Dergisi: Teori Ve Uygulama*, 10(20), 166–192. Diambil dari <https://dergipark.org.tr/tr/pub/eibd/issue/51497/668405>
- Pahlepi, R. (2021). *Tingkat Pengangguran Terbuka Lulusan SMK Paling Tinggi*. databoks. Diambil dari <https://databoks.katadata.co.id/datapublish/2021/11/06/tingkat-pengangguran-terbuka-lulusan-smk-paling-tinggi>
- Pearce, J., & Robinson, R. (2011). *Manajemen Strategik*. Tangerang: Binapura Kasara Publisher
- Prasetyo, Y. D., Tiwan, & Soemowidagdo, A. L. (2018). Pengaruh Praktik Industri terhadap Hard Skill Siswa SMK pada Program Keahlian Teknik Pemesinan. *Jurnal Dinamika Vokasional Teknik Mesin*, 3(2), 87—93.
- Pratama, P., & Bintang, S. (2016). Penerapan Strategi Pembelajaran Pelatihan Industri (Training Within Industry) Terhadap Aktivitas dan Hasil Belajar Instalasi Motor Listrik. *Jurnal Pendidikan Teknologi dan Kejuruan*, 17(2), 73–79.
- Priambudi, P., Mahmudah, F. N., & Susatya, E. (2020). Pengelolaan Kelas Industri di Sekolah Menengah Kejuruan. *Jurnal Pendidikan Teknologi Kejuruan*, 3(2), 15–25.
- Rakhman, M. L., & Trihantoyo, S. (2020). Meningkatkan Keterserapan Lulusan Program Keahlian Multimedia Di Smk Negeri 12 Surabaya. *Jurnal Inspirasi Manajemen Pendidikan Volume*, 08(03), 199–212.
- Rizki, N. A., Suyadi, B., & Sedyati, R. N. (2017). Pengaruh Praktik Kerja Industri terhadap Kemampuan Penguasaan Hardskill Siswa Kelas XI Program Keahlian Teknik Komputer dan Jaringan SMK Negeri 5 Jember. *Jurnal Pendidikan Ekonomi: Jurnal Ilmiah Ilmu Pendidikan, Ilmu Ekonomi, dan Ilmu Sosial*, 2(11), 89—95. <https://doi.org/10.19184/jpe.v11i2.6452>
- Rojaki, M., Fitria, H., & Martha, A. (2021). Manajemen Kerja Sama Sekolah Menengah Kejuruan dengan Dunia Usaha dan Dunia Industri. *Jurnal Pendidikan Tambusai*, 5(3), 6337–6349.
- Rully, T. D., Rahmawati, Y., & Putranto, H. (2019). Study on The Implementation of Industrial Class Based on School with Electric's Industry Cooperation of PJB Class Students (Jawa-Bali Power Generation) in SMK PGRI 3 Malang. *Advances in Social Science, Education and Humanities Research*, 242, 193–196. <https://doi.org/10.2991/icosvet-18.2019.49>
- Seliger, H., & Shohamy, E. (1989). Second language research methods. Oxford, UK: Oxford University Press
- Suroto, S. (2017b). Model Perencanaan Sekolah Menengah Kejuruan Penyelenggara Kelas Standar Industri. *Taman Vokasi*, 5(2), 204–221. <https://doi.org/10.30738/jtvok.v5i2.2524>
- Suroto. (2017a). Model Perencanaan Sekolah Menengah Kejuruan Penyelenggara Kelas Standar Industri. *Jurnal Taman Vokasi*, 2(5), 204-211.
- Tri wahyudi, J. (2020). Manajemen Kemitraan Sekolah dan Dunia Industri Dalam Penyerapan Lulusan SMK, 3(1), 88–99. <https://doi.org/10.30738/mmp.v3i1.4323>
- Wheelen, T. L., & Hunger, J. D. (2010). *Strategic Management and Business Policy Achieving Sustainability*. Pearson.

-
- Wibowo, N. (2016). Upaya Memperkecil Kesenjangan Kompetensi Lulusan Sekolah Menengah Kejuruan Dengan Tuntutan Dunia Industri. *Jurnal Pendidikan Teknologi dan Kejuruan*, 23(1), 45-50.
- Wicaksono, D. E., Yoto, Y., & Basuki, B. (2017). Implementasi Pelaksanaan Kurikulum Kelas Industri Di Smk Muhammadiyah 1 Kepanjen Kabupaten Malang. *Jurnal Pendidikan Profesional*, 6(1), 156–165.
- Yin, R. K. (2003). Case study research: Design and methods. Thousand Oaks, CA: Sage.